
Robert Liguori
Ross Andrews
Game Database Final Write-up

1: Background information
This database exists to store information about board games, players, and sessions of
game play. The database can be used to track which player owns what games, and who
won what sessions of which game. The exact specifications of the project are as follows.

2: E/R diagram / ODL Schema

3: Relations from E/R diagram / Relations from ODL Schema

Entity set relations:
Games(gameName, publisher, year, length, player_min, player_max)
Users(playerName, address, age)
Articles(article_ID, text)
Sessions(session_ID, time, winner)

Relationship relations:
Own(playerName, gameName, publisher)
About(article_ID, gameName, publisher)
Played_in(session_ID, gameName, publisher)
Author_of(article_ID, playerName)
Player_in(session_ID, playerName)

Inheritance relations:
Reviews(article_ID, rating)

Relations generated from ODL schema:

Games(gameName,publisher,year,length,player_min,player_max)
Users(userName,address,age)
Reviews(articleID,rating)

// These next two incorporate the keys for Games, to handle the many-one relationships:
Sessions(sessionID,publisher,gameName,year,month,day,winner)
Articles(articleID,gameName,publisher,text)

player_in(userName,sessionID)
author_of(articleID,userName)
own(userName,gameName,publisher)

4: FDs / MDs (and normalization)
Entity set relations:
Games(gameName, publisher, year, length, player_min, player_max)
Users(playerName, address, age)
Articles(article_ID, text)
Sessions(session_ID, time, winner)

Derived FDs:
GameName, publisher -> GameName, publisher, year, length, player_min, player_max
playerName -> playerName, address, age
article_ID -> article_ID, text
session_ID -> session_ID, time, winner

Relationship relations:
Own(playerName, gameName, publisher)
About(article_ID, gameName, publisher)
Played_in(session_ID, gameName, publisher)
Author_of(article_ID, playerName)
Player_in(session_ID, playerName)

Derived FDs:
Because all elements of the relations are part of each relation's key, all FDs are trivial.

Inheritance relations:
Reviews(article_ID, rating)

Derived FDs:
article_ID -> rating

A relation is in BCNF iff the left-hand sides of all FDs for the relation contains a
superkey. The left-hand sides of all above FDs contain a superkey for their relation.
Therefore, they are all in BCNF.

If a relation is in BCNF, it is in 3NF. All of the above relations are in BCNF. Therefore,
they are in 3NF.

The right-hand sides of all FDs are the set of all attributes of the relation. Therefore, all
the MDs derivable from the FDs are trivial. A relation is in 4NF if every non-trivial MD
contains a superkey for its relation in its left side. Since there are no non-trivial MD, all
of these nonexistent relations contain a superkey on their left-hand sides, and therefore,
all of the above relations are in 4NF.

5: SQL Schema / example table entries
CREATE TABLE Games
(

gameName VARCHAR(255),
publisher VARCHAR(255),
year INT,
length_min INT,
length_max INT,
player_min INT,
player_max INT,
primary key(gameName,publisher)

) type="InnoDB";

Create TABLE Users
(

userName varchar(255) PRIMARY KEY,
address TEXT,
age INT

) type="InnoDB";

CREATE TABLE Sessions
(

sessionID int PRIMARY KEY,
gameName VARCHAR(255),
publisher VARCHAR(255),
winner VARCHAR(255),
time_start INT,
time_end INT,
foreign key (winner) references Users(userName),
foreign key (gameName,publisher) references

Games(gameName,publisher)
) type="InnoDB";

CREATE TABLE Articles
(

articleID INT PRIMARY KEY,
gameName VARCHAR(255),
publisher VARCHAR(255),
text text,
foreign key(gameName,publisher) references

Games(gameName,publisher)
) type="InnoDB";

CREATE TABLE Reviews
(

articleID int primary key,
rating double

CHECK (rating >= 0.0 AND rating <= 100.0),
foreign key (articleID) references Articles(articleID)

) type="InnoDB";

CREATE TABLE player_in
(

sessionID int,
userName varchar(255),
foreign key (sessionID) references Sessions(sessionID),
foreign key (userName) references Users(userName)

) type="InnoDB";

CREATE TABLE author_of
(

userName varchar(255),
articleID int,
foreign key (userName) references Users(userName),
foreign key (articleID) references Articles(articleID)

) type="InnoDB";

CREATE TABLE own
(

userName varchar(255),
gameName VARCHAR(255),
publisher VARCHAR(255),
foreign key (userName) references Users(userName),
foreign key (gameName,publisher) references

Games(gameName,publisher)
) type="InnoDB";

6: Queries / indexes
Look up one person's collection:
This is supposed to return all the data for all the games owned by one person (in this case, "ehall").

select
Games.*

from
Games,own

where
Games.gameName=own.gameName and Games.publisher=own.publisher
and own.userName="ehall";

(Truncating the output, and showing a row at a time)
*************************** 1. row ***************************
 gameName: Monkeys on the Moon
 publisher: Eight Foot Llama
 year: 2002
length_min: 60
length_max: 60
player_min: 2
player_max: 4
*************************** 2. row ***************************
 gameName: 25 Words or Less
 publisher: Winning Moves
 year: 1996
length_min: 60
length_max: 60
player_min: 4
player_max: 4

Look up the game(s) owned by the most people:

select
Games.*,count(userName) as num_owners

from
own, Games

where
Games.gameName=own.gameName and Games.publisher=own.publisher

group by
gameName,publisher

having
count(userName)=
(select count(userName) from own group by gameName,publisher

order by count(userName) desc limit 1);

*************************** 1. row ***************************
 gameName: Checkers
 publisher: Public Domain
 year: 1150
length_min: 30
length_max: 30
player_min: 2
player_max: 2
num_owners: 24

Look up the game(s) with the most plays:
(This is the game with the most sessions involving it)

select
 Games.*,count(Sessions.sessionID) as num_plays
from
 Sessions,Games
where
 Games.gameName=Sessions.gameName and
Games.publisher=Sessions.publisher
group by
 Sessions.gameName,Sessions.publisher
having
 count(Sessions.sessionID)=
 (select count(*) from Sessions group by gameName,publisher
order by count(*) desc limit 1);

(Truncated to one row)
*************************** 1. row ***************************
 gameName: Atilla
 publisher: Rio Grande Games
 year: 2000
length_min: 45
length_max: 45
player_min: 2
player_max: 5
 num_plays: 2

Look up the most recently played game (game from the session with the highest end time):

select
 Games.*,Sessions.time_start,Sessions.time_end
from
 Sessions,Games
where
 Games.gameName=Sessions.gameName and
Games.publisher=Sessions.publisher
order by
 time_end desc
limit 1;

*************************** 1. row ***************************
 gameName: Bohnanza
 publisher: Rio Grande Games
 year: 1997
length_min: 45
length_max: 45
player_min: 2
player_max: 7
time_start: 7
 time_end: 12

Look up the game(s) with the highest average rating:

select
 Games.*,round(avg(Reviews.rating),2) as averageRating
from
 Games,Reviews,Articles
where
 Games.gameName=Articles.gameName and
Games.publisher=Articles.publisher
 and Reviews.articleID=Articles.articleID
group by
 Games.gameName,Games.publisher
having
 avg(Reviews.rating)=
 (select avg(rating) from Reviews,Articles where
Reviews.articleID=Articles.articleID group by gameName,publisher order
by avg(rating) desc limit 1);

*************************** 1. row ***************************
 gameName: Quo Vadis?
 publisher: AMIGO Spiel
 year: 1992
 length_min: 45
 length_max: 45
 player_min: 3
 player_max: 5
averageRating: 0.95

Indexes:
Creating an index on (gameName, publisher) in the tables Games and own may be worthwhile, as these two
attributes form a key for each game. In addition, both gameName and publisher are both strings, and as
such have the potential to slow down comparison. A query on a large number of game records with similar
names and publishers would be improved by the creation of such an index. Since users should only have
access to modify who owns which games, and not to what games the database knows about, the
performance hit caused by the creation of this index would not significantly affect the database's
functionality.

7: Division of Labor
The initial segments of the project were collaborations, with both team memebers
contributing more or less equally. Steps that could be evenly subdivided often were. The
vast majority of the actual database code was produced by Ross Andrews, while the test
data for the database and write-ups were generally produced by Robert Liguori.

8: Real-world utility
Ultimately, there will never be an enormous market for real-life uses of the game
database. Resources such as http://www.boardgamegeek.com/ already exist and already
have a great deal of data pre-loaded into them. Since the utility of a database such as this
is dependent on the amount of data pre-loaded, and this database has very little chance of
attracting as many users as the existing game database solutions, it seems that this
project, were it to be released publicly, would permanently lag behind existing solutions
in popularity. However, the game database does have a few advantages over
boardgamegeek.com. One is its flexibility; any user who wishes to use the software
would be free to download a copy and modify it to their taste. Advanced users who
wished to execute arbitrary SQL queries would certainly get more mileage out of our
solution than an existing one. Another similar issue is the one of security; users who
wished to track tournament statistics could use the game database on a secure machine,
and thusly ensure that their data is secure.
In conclusion, it appears that the game database may get some use in the real world, but
only by a very narrow class of users.

